Essay on laws of thermodynamics

Choose one of the following topics and respond to it in an essay of no less than 5 pages and no more than 7 pages. Your essay should be typed, or point, double-spaced and spell-checked. Your essay must include a bibliography that minimally includes the relevant course readings.

Essay on laws of thermodynamics

Rocks and trees, cities and jungles, are all just collections of matter that move and change shape over time while exchanging energy with their surroundings.

Essay on laws of thermodynamics

Does that mean physics has nothing to tell us about what life is and when it will appear? As a physicist, I prefer to chart a course between reductionism and defeat by thinking about the probability of matter becoming more life-like.

The starting point is to see that there are many separate behaviours that seem to distinguish living things.

Thermodynamics Essays and Research Papers -

They harvest energy from their surroundings and use it as fuel to make copies of themselves, for example. They also sense, and even predict things about the world they live in. Each of these behaviours is distinctive, yes, but also limited enough to be able to conceive of a non-living thing that accomplishes the same task.

Now the question becomes: And, more intriguingly, can it tell us when and under what conditions we should expect them to emerge?

When we conceive of an organism as just a bunch of molecules, which energy flows into, through and out of, we can use this information to build a probabilistic model of its behaviour. From this perspective, the extraordinary abilities of living things might turn out to be extreme outcomes of a much more widespread process going on all over the place, from turbulent fluids to vibrating crystals — a process by which dynamic, energy-consuming structures become fine-tuned or adapted to their environments.

Far from being a freak event, finding something akin to evolving lifeforms might be quite likely in the kind of universe we inhabit — especially if we know how to look for it. The understanding that life and heat are intertwined is very old knowledge.

Moses, for one, was launched into his first encounter with the Creator of all life by the sight of a tree ablaze, burning with a marvellous fire that left the living organism unscathed.

In physics, heat is a form of energy, made up of the random movements and collisions of molecules as they bounce off each other at the nanoscale. Although it sounds like something that just wobbles around in the background as other factors take centre stage, it actually plays a crucial role in making some of the most interesting kinds of behaviour possible.

Some things in the world seem reversible: I can kick a ball upward and it will rise, or I can drop a ball from a height, and it will fall. Anything that can go one way can go the other, if you just set it moving back the way it came.


Sandcastles disintegrate under the waves, but we never see them splash back together when the tide recedes. Countless examples of ordinary occurrences around us would look extraordinary if they happened in rewind. When a piece of wood burns, an enormous amount of heat and chemical product is exchanged with the surrounding air.

That is not going to happen. In a rigorous, quantitative sense, the dissipation of heat is the price we pay for the arrow of time Many scientific commentators have noted the connection between heat and the arrow of time.

However, only in the past 20 years or so have physicists developed a crisp, comprehensive formulation of the relationship.

He asked the following question: By applying some basic assumptions, he was able to mathematically prove the following. In a rigorous, quantitative sense, the dissipation of heat is the price we pay for the arrow of time.

Another way of phrasing this insight is to note that the more a system increases the entropy of its surroundings, the more irreversible it becomes. Now, it must be said that in the grand contest for the most misunderstood idea in the history of physics, entropy is probably the winner.

Even people who are normally averse to any mention of the natural sciences will sagely volunteer that entropy — read: Living organisms, for one, seem to defy this misleading gloss on the second law.

They take disorganised bits and pieces of matter, and put them together in fiendishly complex and refined ways. Thankfully, the full story is substantially more nuanced.

Maxwell's demon - Wikipedia

Connoisseurs use entropy in a technical, microscopic sense, as a statistical measure of the number of different ways the same kind of arrangement of matter can be constructed out of its constituent parts.

For a room full of air, for example, it turns out there are just many, many more ways of spreading out the molecules uniformly than there are of squishing them into clumps. The connection between entropy and heat is more subtle.

Essay on laws of thermodynamics

Remember that heat is energy diffused randomly among the particles in a substance. The more energy, the more ways of sharing it around; and the more ways of sharing the energy around, the higher the entropy. This is what the second law means: The more heat you throw into the bath, the less hope you have of getting it back from a freak fluctuation, and the less likely it is that you will have the energy you need to retrace your steps once the movie has run forward.

If you only release one feather, the gale might blow it back to you; but if you release hundreds or thousands, the chance of capturing them all is basically nil. Now we can bring life into the picture. Living things clearly have energy to burn, and they get this energy from being worked on.Laws of thermodynamics The ecosystem that I live in is a farm setting where there are farm animals as well as crops growing all over the vast fields that we have.

This is a rich ecosystem with numerous storages of the biological energy. More about Thermodynamics Essay. Thermodynamic Optimization of Flow Over an Isothermal . Transfers of Heat It is appropriate now to discuss how heat is transferred. One must remember, again, that in order for heat to be transferred from one point to another, there must be a difference of temperature between those two points.

Physics Jokes If you didn't get the joke, you probably didn't understand the science behind it. If this is the case, it's a chance for you to learn a little physics. Read Thermodynamics essays and research papers.

View and download complete sample Thermodynamics essays, instructions, works cited pages, and more. Essay Instructions: please explain how the laws of thermodynamics apply to each system. The term "thermodynamics" comes from two root words: "thermo," meaning heat, and "dynamic," meaning power.

So, the laws of thermodynamics are the laws of "heat power” and just like most scientific laws, these laws are supreme meaning everything in the universe has to obey them. The presence of natural evil in a world supposedly designed by a loving God is a formidable barrier to faith for many people.

For example, atheist philosopher Brian Marston says, "Although an omniscient, omnipotent, perfectly good God could be justified in allowing moral evil, such a God is never justified in creating a world in which natural evil occurs.".

Intelligent Design: Humans, Cockroaches, and the Laws of Physics